Chlorobis(triphenylphosphine)(diphenylacetylene)iridium (XXIIIc). To a mixture of the nitrogen complex XXII ($500 \mathrm{mg}, 0.064 \mathrm{mmole}$) and diphenylacetylene ($200 \mathrm{mg}, 0.112 \mathrm{mmole}$) was added under nitrogen 10 ml of benzene with stirring. After the brown solution had been stirred for 2 hr at 45°, an insoluble precipitate (10 mg) was removed by filtration. Evaporation of the filtrate under vacuum afforded a brown solid which was purified by recrystallization from benzene-methanol, yield $510 \mathrm{mg}(85 \%)$ of yellow crystals, mp 193-195 ${ }^{\circ}$ dec. Anal. Caled for $\mathrm{C}_{80} \mathrm{H}_{40} \mathrm{ClP}_{2} \mathrm{Ir}: \mathrm{C}, 64.52 ; \mathrm{H}$, 4.30; Cl, 2.79; P, 6.67; mol wt, 930. Found: C, $64.30 ; \mathrm{H}$, 4.39; Cl, 3.01; P, 6.50; mol wt, 896.

Chlorobis(triphenylphosphine)(ethyl phenylpropiolate)iridium (XXIIId). To a suspension of the nitrogen complex XXII (500 $\mathrm{mg}, 0.064 \mathrm{mmole}$) in 5 ml of benzene was added a solution of ethyl
phenylpropiolate ($150 \mathrm{mg}, 0.086 \mathrm{mmole}$) in 5 ml of benzene under nitrogen at 10°. After the addition was complete the mixture was stirred for 1 hr at room temperature. The solvent was removed under vacuum to give an oily residue. The yellow crystalline product was obtained by crystallization from benzene-methanol, yield $480 \mathrm{mg}(81 \%), \mathrm{mp} 192-193^{\circ}$ dec. Anal. Caled for $\mathrm{C}_{4 ;} \mathrm{H}_{40}{ }^{-}$ $\mathrm{ClO}_{2} \mathrm{P}_{2} \mathrm{Ir}: \mathrm{C}, 60.91 ; \mathrm{H}, 4.32 ; \mathrm{Cl}, 3.89 ; \mathrm{P}, 6.74$; mol wt, 926. Found: C, 61.18; H, 4.16; Cl, 4.02; P, 6.48; mol wt, 899.
Chlorobis(triphenylphosphine)(ethyl p-nitrophenylpropiolate)iridium (XXIIIe). The purple crystalline complex XXIIIe was prepared in the manner outlined above, yield 570 mg (92%) , mp 124$126^{\circ}$ dec. Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{ClNO}_{2} \mathrm{P}_{2} \mathrm{Ir}$: C, $58.08 ; \mathrm{H}$, $4.02 ; \mathrm{Cl}, 3.71 ; \mathrm{P}, 6.38 ; \mathrm{mol} \mathrm{wt}$, 971 . Found: C, $57.89 ; \mathrm{H}$, 4.16; Cl, 3.99; P, 6.15; mol wt, 998 .

Phosphorus Trioxide as a Tetradentate Ligand. II. Borane Complexes

Jean G. Riess ${ }^{1}$ and John R. Van Wazer
Contribution from the Central Research Department, Monsanto Company, St. Louis, Missouri 63166. Received August 8, 1966

Abstract

When diborane is slowly bubbled through a solution of $\mathrm{P}_{4} \mathrm{O}_{6}$ in dry chloroform at room temperature, \mathbf{P}^{31} nuclear magnetic resonance shows that there is successive coordination of one, two, and three BH_{3} groups around the $\mathrm{P}_{4} \mathrm{O}_{6}$. Crystalline species corresponding to $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}$ have been obtained. In solution, equilibria are reached rapidly betwen the various $\mathrm{P}_{4} \mathrm{O}_{6} \cdot x \mathrm{BH}_{3}$ complexes (where $x=0,1,2,3$, and 4) so that the distribution of species corresponding to any given $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ mole ratio may be calculated from the set of three equilibrium constants presented herein. A fourth constant relates the partial pressure of diborane to the solution composition.

In paper I^{2} and a prior brief communication, ${ }^{3}$ it was shown that the $\mathrm{P}_{4} \mathrm{O}_{6}$ cage molecule acts as a tetradentate nonchelating ligand in the coordination chemistry of transition metals. This finding led to the investigation as to whether phosphorus trioxide would donate lone-pair electrons to Lewis acids. A communication from Japan ${ }^{4}$ and one from our laboratory ${ }^{5}$ attest to the fact that $\mathrm{P}_{4} \mathrm{O}_{6}$ reacts with $\mathrm{B}_{2} \mathrm{H}_{6}$ to give complexes in which BH_{3} groups are coordinated around the $\mathrm{P}_{4} \mathrm{O}_{6}$ molecule. The purpose of this paper is to give a full account of the preparation and properties of the complexes formed between phosphorus trioxide and borane.

Experimental Section

Nmr Measurements. The $\mathrm{P}^{31}, \mathrm{~B}^{11}$, and H^{1} nuclear magnetic resonance (nmr) spectra were obtained at $40.5,15.1$, and 60.0 Mc , respectively, on Varian spectrometers HR-100, HR-60, and A-60. The \mathbf{P}^{31} chemical shifts (presented in ref 5) were referenced with respect to $\mathrm{P}_{4} \mathrm{O}_{6}$, generally as an internal standard, but are reported with respect to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. The H^{1} (also see ref 5) and B^{11} chemical shifts are respectively referenced to dissolved tetramethylsilane and to $\mathrm{BF}_{3} \cdot \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{\mathrm{j}}\right)_{2}$ contained in a capillary. Upfield shifts are denoted with a positive sign.
(1) On leave from the University of Strasbourg, Institut de Chimie, 1964-1966.
(2) J. G. Riess and J. R. Van Wazer, J. Am. Chem. Soc., 88, 2166 (1966).
(3) J. G. Riess and J. R. Van Wazer, ibid., 87, 5506 (1965).
(4) G. Kodama and H. Kondo, ibid., 88, 2045 (1966).
(5) J. G. Riess and J. R. Van Wazer, ibid., 88, 2339 (1966).

Reagents and Reactions. The phosphorus trioxide and nickel carbonyl were the same as previously described, ${ }^{2}$ and the diborane was obtained from the Callery Chemical Co., Pittsburgh, Pa. The reaction of $\mathrm{P}_{4} \mathrm{O}_{6}$ and $\mathrm{B}_{2} \mathrm{H}_{6}$ was carried out by first passing the diborane through a cold trap at -60° and then slowly bubbling it at a rate of ca. $10 \mathrm{ml} / \mathrm{min}$ into a $1: 2$ by volume solution of $\mathrm{P}_{4} \mathrm{O}_{6}$ in dry chloroform or n-hexane maintained at 25°. Samples were removed at regular intervals of time with a syringe through a serumbottle stopper and transferred into $5-\mathrm{mm}$ precision-bore nmr tubes in a glove bag under dry nitrogen. A number of admixing reactions, such as combining crystalline $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$ with $\mathrm{P}_{4} \mathrm{O}_{6}$, were carried out in the nmr tubes, adding dry chloroform when a solvent was needed. All handling operations were performed in a plastic dry bag flushed with dry nitrogen. Warning: The $\mathrm{P}_{4} \mathrm{O}_{6} \cdot x \mathrm{BH}_{3}$ compounds react explosively with water and moist air. Even old samples, minor spillings, etc., can sometimes produce unexpected firecracker-like explosions when present in small quantities.

Preparation of Crystalline $\mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathbf{2 B H _ { 3 }}$. The crystalline compound $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$ was prepared by slowly blowing diborane over the surface of pure $\mathrm{P}_{4} \mathrm{O}_{6}(3.04 \mathrm{~g})$ at 25°. Crystals began to form after ca. 8 hr , and a solid crystalline mass resulted after 12 hr , at which time the $\mathrm{P}_{4} \mathrm{O}_{6}$ had been quantitatively transformed into $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}(3.40 \mathrm{~g})$. Recrystallization in dry n-pentane at Dry Ice temperature gave long transparent needles. The infrared spectrum obtained on a KBr pellet protected from moisture exhibited the characteristic B-H stretching absorption at $2400 \mathrm{~cm}^{-1 .}{ }^{6}$

Results and Conclusions

Reaction with Diborane. An exothermic reaction takes place when diborane is bubbled through a solution of $\mathrm{P}_{4} \mathrm{O}_{6}$ in an inert dry solvent without temperature control. The reaction mixture is seen to convert

[^0]

Figure 1. The $P^{31} \mathrm{nmr}$ spectra of a series of compositions made by bubbling diborane through a chloroform solution of phosphorus trioxide. The over-all stoichiometry of each composition is given by the value of $R \equiv \mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ mole ratio and the sets of resonances corresponding to individual molecular species are differentiated by the encircled numbers.
rapidly into a transparent yellow gel, probably having a polymeric structure. The reaction takes an alternate path when the diborane is slowly incorporated into a solution maintained at 25°. In this case, the reaction mixture remains liquid and can be analyzed quantitatively by nmr. As the diborane is taken up by the solution of phosphorus trioxide, a given set of nmr peaks is seen to build up and then disappear, while another set is also building up and then disappearing. In other words, the changes observed when going through a time series of nmr spectra are quite similar to those previously seen in the replacement of the carbon monoxide of nickel carbonyl by phosphorus trioxide.? Figure 1 shows the successive nmr patterns observed during the course of the reaction between diborane and phosphorus trioxide. There is a continuous gradual change in the nmr patterns corresponding to successive maximization of the peaks labeled (1), then (2), and finally (3), indicating a sequential reaction. Each spectrum contains two groups of peaks, both in the spectral region not far from the $\mathrm{P}_{4} \mathrm{O}_{6}$ resonance. The group which has a more negative chemical shift than $\mathrm{P}_{4} \mathrm{O}_{6}$ consists of sharp lines with indirect spin-spin coupling being readily recognizable. This is attributed to triply connected phosphorus not coordinated to boron atoms. The set of peaks lying upfield of $\mathrm{P}_{4} \mathrm{O}_{6}$ corresponds to the phosphorus atoms bonded to boron. These peaks appear as broad humps due to the complicated system of spin-spin splitting with (1) the uncoordinated phosphorus atoms, (2) the boron atoms, and (3) the protons of the BH_{3} groups, as well as to the quadrupole moment of the boron.

Indentification of the spectra corresponding to individwal molecules in the mixtures is obtained by observing which peaksexhibit constant area ratios and maximize together. The first set of resonances (Figure 1, A) to appear in addition to the sharp $\mathrm{P}_{4} \mathrm{O}_{6}$ line consists of a sharp $1: 1$ doublet accompanied by an upfield hump which has an

Figure 2. Nmr spectrum recorded during the reaction in chloroform of $c a .1$ molar equiv of $\mathrm{Ni}(\mathrm{CO})_{4}$ with an equilibrated $\mathrm{P}_{4} \mathrm{O}_{6}$. $x \mathrm{BH}_{3}$ mixture containing 88% of the $\mathrm{P}_{4} \mathrm{O}_{6}$ as $\mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathrm{BH}_{3}$. The main molecular species seen in this P^{31} spectrum is the molecule shown. The resonances denoted by α correspond to the uncoordinated phosphorus atoms of the $\mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathrm{BH}_{3}$ starting material. The value given for $J \mathrm{P}_{\mathrm{B}}-\mathrm{P}_{C}$ is tentative.
area which is always equal to one-third of the doublet area. This pattern is consistent with that expected for a compound in which a single BH_{3} group is coordinated to one $\mathrm{P}_{4} \mathrm{O}_{6}$ cage molecule. Although the $\mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathrm{BH}_{3}$ structure is analogous to the $\mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathrm{Ni}(\mathrm{CO})_{3}$ molecule, ${ }^{2,3}$ its smaller spin-spin coupling constant and the larger difference in shift between the uncoordinated and coordinated phosphorus atoms results in a simple AX_{3} type of spectrum instead of the higher order $A B_{3}$ type observed for the tricarbonylnickel compound.

Incorporation of more $\mathrm{B}_{2} \mathrm{H}_{6}$ results in the development of a $1: 2: 1$ sharp-line triplet, accompanied by an upfield hump exhibiting the same peak area (see Figure 1, B and C). This spectrum is consistent with the coordination of a second BH_{3} group to the $\mathrm{P}_{4} \mathrm{O}_{6}$ core. The next set of peaks to show up (Figure 1, C and D) consists of a $1: 3: 3: 1$ quartet plus an upfield hump which exhibits three times the peak area of the quartet. This pattern corresponds to the molecule $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}$. When the diborane is bubbled through the solution of phosphorus trioxide at 1 atm pressure, the coordination process stops (see final plateau in Figure 3) when the mixture consists of $c a$. one-third $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}$ and twothirds $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$.

The $\mathrm{B}^{i i}$ and H^{i} spectra are consistent with the interpretation given above for the P^{31} patterns. The $B^{\prime \prime}$ spectrum exhibits a doubled quartet at +40 ppm due to splitting by the three hydrogens and its coordinated phosphorus ($J_{\mathrm{B}-\mathrm{H}}=102 \mathrm{cps}$ and $J_{\mathrm{B}-\mathrm{P}}=47$ cps). The H^{\prime} spectrum is a quartet which is attributed to the $3 / 2$ spin of the boron atom. This is further split into doublets by the phosphorus ($J_{\mathrm{H}-\mathrm{P}}=18 \mathrm{cps}$ and $J_{\mathrm{B}-\mathrm{P}}=102 \mathrm{cps}$). The chemical shifts of 0.6 ppm in the H^{1} spectrum and 40 ppm in the B^{11} spectrum as well as the coupling constants given above should be compared with the constants previously reported ${ }^{\text {b }}$ from the P^{31} and H^{1} spectra.

Additional evidence to prove that the $\mathrm{P}_{4} \mathrm{O}_{6}$ cage structure remains unaltered in the formation of complexes with the BH_{3} group was obtained by treating mixtures having various $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ ratios with nickel carbonyl. Carbon monoxide is displaced during this reaction, in which one first notes in the nmr spectra a decrease of the resonances due to uncoordinated phosphorus with respect to those corresponding to the phosphorus coordinated to boron. Simultaneously with this, a set of new peaks is seen to grow in the spectral region previously attributed ${ }^{2,3}$ to the phosphorus coordinated to nickel in the $\mathrm{P}_{4} \mathrm{O}_{6} \cdot x \mathrm{Ni}(\mathrm{CO})_{3}$ complexes. A typical P^{31} spectrum of this type is shown
in Figure 2. This spectrum was obtained by addition of ca. 1 molar equiv. of $\mathrm{Ni}(\mathrm{CO})_{4}$ to a sample of $\mathrm{P}_{4} \mathrm{O}_{6}$. $x \mathrm{BH}_{3}$ complexes containing 88% of the $\mathrm{P}_{4} \mathrm{O}_{6}$ in the form of the $\mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathrm{BH}_{3}$ structure. Going from low to high field, there are three groups of nmr peaks corresponding respectively to (1) phosphorus coordinated to nickel, (2) uncoordinated phosphorus, and (3) phosphorus coordinated to boron. The fine structure in this nmr pattern is consistent with the interpretations given here and previously. ${ }^{2,3.5}$
The addition of more nickel carbonyl results in the progressive stripping of the borane groups from the central $\mathrm{P}_{4} \mathrm{O}_{6}$ moiety, with these groups being replaced by $\mathrm{Ni}(\mathrm{CO})_{3}$ groups. Finally, the symmetrical structure of the well-characterized ${ }^{2,3} \quad \mathbf{P}, \mathbf{P}^{\prime}, \mathbf{P}^{\prime \prime}, \mathbf{P}^{\prime \prime \prime}$-tetrakistricarbonylnickel tetraphosphorus hexaoxide, $\mathrm{P}_{4} \mathrm{O}_{6}$. $4 \mathrm{Ni}(\mathrm{CO})_{3}$, is obtained, as evidenced by its single-line sharp nmr resonance at -133 ppm . The presence of this compound was unambiguously demonstrated by the exact 32 -line spectra obtained during the reaction which it undergoes when additional $\mathrm{P}_{4} \mathrm{O}_{6}$ is added to its chloroform solution ${ }^{2}$ to cause exchange of $\mathrm{Ni}(\mathrm{CO})_{3}$ groups around the $\mathrm{P}_{4} \mathrm{O}_{6}$ core.
The Crystalline $\mathbf{P}_{4} \mathrm{O}_{6} \cdot \mathbf{2} \mathrm{BH}_{3}$ Complex. When diborane is incorporated into phosphorus trioxide as the neat liquid, nmr shows that the reaction passes through the initial formation of $\mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathrm{BH}_{3}$ but stops as the crystalline $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$ is obtained. This highly reactive material, also recently described by Kodama and Kondo, ${ }^{4}$ is stable when stored under dry nitrogen.

An X-ray study involving a zero-level Weissenberg photograph of an oscillating single crystal mounted in a capillary under nitrogen shows that the $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$ crystals are orthorhombic with $a=8.023, b=15.500$, and $c=15.537 \mathrm{~A}$. Since the sample was found not to be stable under X-ray bombardment, these data were obtained by moving the crystal during the exposure so that a new portion was continuously being bathed in the X-ray beam. Because of this instability, it has not been feasible to carry out a full structure determination by means of single-crystal X-ray diffraction. In the Weissenberg photographs, the systematic absences are $0 k 0,00 l$, and $h 0 l$ for k odd or l odd. These absences are consistent with either of two space groups: $\mathrm{Pmc} 2_{1}$ or Pmcm . The distribution of the X-ray intensities suggests a centrosymmetric space group so that Pmom is the more probable. This space grouping has eight equivalent positions, and the assumption of eight molecules per unit cell leads to a calculated density of 1.702, which is consistent with the density of analogous compounds: $\quad\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{Ni}(\mathrm{CO})_{3}, \quad 1.877^{7} \quad \mathrm{P}_{4}\left(\mathrm{NCH}_{3}\right)_{6}\right.$. $\left.4 \mathrm{BH}_{3}, 1.36 ;{ }^{8} \quad \mathrm{P}_{4}\left(\mathrm{NCH}_{3}\right)_{6} \cdot 4 \mathrm{Ni}(\mathrm{CO})_{3}, 1.70 \mathrm{~g} / \mathrm{cc}^{8}\right]$. Thus, the molecule is not required by the space group to have any particular symmetry.

Crystalline $\mathbf{P}_{4} \mathbf{O}_{6} \cdot \mathbf{3 B} \mathbf{H}_{3}$. Upon cooling the concentrated chloroform solutions of mixtures having a $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ ratio of 2.35 (the highest ratio obtainable at a diborane pressure of 1 atm , vide infra), well-shaped crystals are observed to form. Although considerable effort was devoted to isolating these crystals, they could never be separated from the mother liquor without decomposing. However, a quantitative analysis performed immediately after dissolution of these crystals in
(7) E. D. Pierron, P. J. Wheatley, and J. Riess, Acta Cryst., in press. (8) J. Riess and J. R. Van Wazer, Bull. Soc. Chim. France, in press.

Figure 3. Variation of the over-all solution $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ mole ratio with time as $\mathrm{B}_{2} \mathrm{H}_{6}$ is bubbled at a constant rate at 1 atm pressure into a chloroform solution of $\mathrm{P}_{4} \mathrm{O}_{6}$ kept at 25°.
fresh chloroform showed that the crystals are richer in BH_{3} than the initial mixture. Thus, a slurry of crystals which after redissolution gave a mixture of $56 \% \mathrm{P}_{4} \mathrm{O}_{6}$. $3 \mathrm{BH}_{3}$ and $44 \% \mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$ (i.e., an over-all $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ ratio of 2.56) was obtained from the initial composition consisting of $35.5 \% \mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}$ and $64.5 \% \mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$ (i.e., over-all $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}=2.35$), leaving a supernatant liquid composed of $23.0 \% \mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{5}, 75.3 \% \mathrm{P}_{4} \mathrm{O}_{6}$. $2 \mathrm{BH}_{3}$, and $1.7 \% \mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathrm{BH}_{3}$ (i.e., over-all $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ $=2.21$). The mixtures having $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ ratios $>$ 2.35 are not stable at 1 atm. Diborane is always observed to be formed by them until the $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ ratio returns to the value of 2.35 under 1 atm pressure.

The findings cited above are interpreted to mean that (1) the crystals formed correspond to the $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}$ complex and (2) there is an equilibrium between the $\mathrm{P}_{4} \mathrm{O}_{6} \cdot x \mathrm{BH}_{3}$ complexes and the gaseous diborane molecule.

Equilibrium Studies. In the work described thus far it has been observed that the distribution of molecular species did not vary with time in closed tubes unless there was a phase change. In the liquid phase, the distribution was found to change only when the over-all $R \equiv \mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ ratio was modified. Such modification may be achieved as follows: (1) bubbling of gaseous diborane into compositions for which R <2.35, (2) presumed incorporation of $\mathrm{B}_{2} \mathrm{H}_{6}$ under pressure to raise R above 2.35 (not investigated in these studies), (3) fractional crystallization and redissolution of $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}$, (4) addition of $\mathrm{P}_{4} \mathrm{O}_{6}$, (5) addition of crystalline $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$, and (6) admixing of two previously prepared samples. The new distribution of species resulting from any of these operations is promptly reached ($<5 \mathrm{~min}$) and depends only on the new $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ over-all ratio. Thus, when the experimental distribution in mole percentage of each species is plotted against the $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ mole ratio, mixtures prepared by any of these procedures are found to fit on the same curves (see Table I herein and the figure of ref 5). Furthermore, the presence of an unreactive solvent has no noticeable effect on the molecular distribution. This proves the existence of a dynamic metastable equilibrium between the various molecular species corresponding to each $\mathrm{BH}_{3 /} / \mathrm{P}_{4} \mathrm{O}_{6}$ value.

The equilibria involving the various molecular
species $\mathrm{P}_{4} \mathrm{O}_{6} \cdot x \mathrm{BH}_{3}$, where $x=0,1,2,3$, and perhaps 4 , may be formally treated as a scrambling of boron groups $v s$. pairs of unshared electrons on the central $\mathrm{P}_{4} \mathrm{O}_{6}$ moiety which exhibits four exchangeable sites. ${ }^{9}$ All of the equilibria between the various complexes can thus be described by a minimum set of three equilibrium constants. Suitable constants may be derived for the chemical equation

$$
\begin{equation*}
2 \mathrm{P}_{4} \mathrm{O}_{6} \cdot x \mathrm{BH}_{3}=\mathrm{P}_{4} \mathrm{O}_{8} \cdot(x+1) \mathrm{BH}_{3}+\mathrm{P}_{4} \mathrm{O}_{6} \cdot(x-1) \mathrm{BH}_{3} \tag{1}
\end{equation*}
$$

where $x=1,2$, or 3 . Two of the constants, $K_{1}=$ $\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}\right]\left[\mathrm{P}_{4} \mathrm{O}_{6}\right] /\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathrm{BH}_{3}\right]^{2}$ and $K_{2}=\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}\right]$. $\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot \mathrm{BH}_{3}\right] /\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}\right]^{2}$, have been computed ${ }^{10}$ from the experimental data collected in Table I. Weightedaverage values are $K_{1}=(4.0 \pm 0.4) \times 10^{-3}$ and K_{2} $=(6.7 \pm 0.6) \times 10^{-3}$. The third equilibrium constant, $K_{3}=\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{BH}_{3}\right]\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}\right] /\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}\right]^{2}$, cannot be calculated directly since the low concentration of $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{BH}_{3}$ in a solution under a 1 atm pressure of $\mathrm{B}_{2} \mathrm{H}_{6}$ prevented us from detecting it by nmr. However, K_{3} could be estimated by choosing the value which, along with the directly determined values of K_{1} and K_{2}, would produce the best fit between the calculated and observed molecular distributions for the higher values of $R=\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ at equilibrium. This gave $K_{3} \approx 4 \times 10^{-3}$. In Table I, the observed distributions of $\mathrm{P}_{4} \mathrm{O}_{6} \cdot x \mathrm{BH}_{3}$ molecules obtained on 33 different preparations are compared with the distributions (see the numbers given in parentheses) calculated from these values of K_{1}, K_{2}, and K_{3}. It should be noted that the agreement between the experimental data and the phenomenological theory based on three constants (without using activity coefficients other than unity) is gratifyingly good.

There is one further equilibrium constant needed to describe the $\mathrm{B}_{2} \mathrm{H}_{6}-\mathrm{P}_{4} \mathrm{O}_{6}$ system at metastable equilibrium at 25°, and this is the relationship between the solution composition and the $\mathrm{B}_{2} \mathrm{H}_{6}$ partial pressure. In Figure 3, a plot is given of the change in the uncoordinated phosphorus atoms of the $\mathrm{P}_{4} \mathrm{O}_{6}$ molecules with time as presented in terms of the over-all $\mathrm{BH}_{3} / \mathrm{P}_{4} \mathrm{O}_{6}$ mole ratio of the solution resulting from bubbling diborane into a $\mathrm{P}_{4} \mathrm{O}_{6}$ solution at a constant slow rate. These data show that, under 1 atm of $\mathrm{B}_{2} \mathrm{H}_{6}$, the R value levels off at 2.35 , as previously noted. According to Table I, this R value corresponds to 63.6 mole $\%$ of $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}$ and 35.6 mole $\%$ of $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}$. We may then set up the following equilibrium equation.

$$
\begin{equation*}
2\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}\right](\mathrm{l}) \rightleftarrows 2\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}\right](\mathrm{I})+\left[\mathrm{B}_{2} \mathrm{H}_{6}\right](\mathrm{g}) \tag{2}
\end{equation*}
$$

For liquid concentrations in mole percentages and gaseous pressures in atmospheres, we have the fourth equilibrium constant needed to define the system fully.
$K^{\prime}=\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}_{3}\right]^{2}\left[\mathrm{~B}_{2} \mathrm{H}_{6}\right] /\left[\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}\right]^{2}=3.2 \mathrm{~atm}$
Interpretation of the $\mathbf{P}^{31} \mathbf{N m r}$ Data. According to a recent quantum-mechanical analysis, ${ }^{11}$ the \mathbf{P}^{31} chem-
(9) J. R. Van Wazer and K. Moedritzer, Angew. Chem. Intern. Ed. Engl., 5, 341 (1966); J. R. Van Wazer, Am. Scientist, 50, 450 (1962).
(10) L. C. D. Groenweghe, J. R. Van Wazer, and A. W. Dickinson, Anal. Chem., 36, 303 (1964).

Table I. Distribution of Molecular Species for $\mathrm{P}_{4} \mathrm{O}_{6}-\mathrm{BH}_{3}$ Complexes in Solution at Equilibrium at 25°

so.	$\mathrm{R}=\mathrm{BH}_{4} / \mathrm{P}_{4} \mathrm{O}_{\mathrm{e}}$	$\mathrm{P}_{4} \mathrm{O}_{8}$	$\mathrm{P}_{4} \mathrm{O}_{\mathrm{e}} \cdot 1 \mathrm{PR}_{3}$	$\mathrm{P}_{4} \mathrm{e}^{8}=23 \mathrm{H}_{3}$	$\mathrm{P}_{4} \mathrm{O}_{6} \cdot 3 \mathrm{BH}_{3}$	$\mathrm{P}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{3}$
$1{ }^{1}$	0.42	57.9 (58.1)	${ }_{(42.18)}^{4.1}$	0.0 10.1	$\left(\begin{array}{c}0.0 \\ (0.0)\end{array}\right.$	(0.0)
$2^{\text {d }}$	0.54	$\begin{aligned} & (46.4 \\ & (46.3) \end{aligned}$	$\left.\begin{array}{c} 53.6 \\ 53.5) \end{array}\right)$	$\left(\begin{array}{c}0.0 \\ (0.2)\end{array}\right.$	(0.0)	(0.0)
3 ${ }^{\text {b }}$	0.79	$\begin{gathered} 21.5 \\ (22.0) \end{gathered}$	$\left(\begin{array}{l} 79.5 \\ (76.9) \end{array}\right.$	(1.1)	(0.0)	0.0 (0.0)
$4{ }^{\text {a }}$	0.99	${ }_{(6.5}^{6.5}$	$\begin{gathered} 88.0 \\ (88.7) \end{gathered}$	(5.5)	(0.0)	0.0 (0.0)
$5^{\text {a }}$	1.01	$\left(\begin{array}{c} 5.2 \\ (5.1) \end{array}\right.$	$\begin{gathered} 88.7 \\ (88) \end{gathered}$	${ }_{(6.1)}^{6.1}$	0.0 (0.0) 0.0	(0.0)
$6^{\underline{d}}$	1.07	$\left(\begin{array}{c}3.3 \\ (3.0) \\ 3\end{array}\right.$	$\begin{gathered} 56.5 \\ (96.9) \end{gathered}$	(10.0)	(0.0)	0.0 (0.0)
$7^{\text {E }}$	1.08	$\left(\begin{array}{l}3.4 \\ (2,8) \\ (2,2) \\ \hline\end{array}\right.$	$\left.\begin{array}{c} 85.3 \\ (96.4) \end{array}\right)$	(12.7)	(0.0)	0.0 (0.0)
$8^{\text {c }}$	1.14	${ }_{(1,7}^{1.2}$	$\begin{gathered} 83.8 \\ (88.5) \end{gathered}$	$\begin{gathered} 15.0 \\ (15.7) \end{gathered}$	(0.0)	0.0 (0.0)
9	1.21	$\left(\begin{array}{c}0.5 \\ (1.1) \\ 0.6\end{array}\right.$	776.9 7.9	$\begin{gathered} 21.8 \\ (21.9) \end{gathered}$	(0.0)	0.0 $10.0)$
10^{6}	1.29	$\begin{gathered} 0.6 \\ (0.7) \end{gathered}$	(60.2)	$\begin{gathered} 29.2 \\ (29.5) \end{gathered}$	(0.0)	(0.0)
$112^{\text {星 }}$	1.36	0.2 (0.4) (0.0)	63.9 (63.2)	35.9 (36.2)	0.0 (0.1)	0.0 (0.0)
$12^{\text {c }}$	1.44	$\left(\begin{array}{c} (0.0) \\ (0.3) \end{array}\right.$	$\begin{aligned} & (56.1 \\ & (55.7) \end{aligned}$	(43.9)	$\begin{aligned} & (0.0) \\ & (0.2) \end{aligned}$	(0.0)
${ }_{13}{ }^{\text {c }}$	1.58	(0.0)	$\begin{gathered} 46.5 \\ (42.5) \end{gathered}$	(57.5)	(0.0)	0.0 $0.0)$ 0.0
14^{4}	1.62	(0.1)	$\begin{gathered} 38.4 \\ (38.4) \end{gathered}$	$\begin{gathered} (60.6) \\ (60) \end{gathered}$	(0,6)	(0.0)
15^{-3}	1.68	0.0 (0.0)	(32.1. 3 (3.8	67.9 (66.3)	-0.0	c.0.0)
16^{6}	1.98	$\begin{aligned} & 0.0 \\ & (0.0) \end{aligned}$	$\begin{gathered} 8.9 \\ (8.1) \end{gathered}$	${ }_{(84.1)}^{(8,8)}$	$\left(\begin{array}{l}7.0 \\ (6.1)\end{array}\right.$	0.0 0.0 0.0
${ }^{17}{ }^{\text {e }}$	$\begin{gathered} 2.01 \\ (2.0 \infty \\ (2,01 \end{gathered}$	0.0 (0.0) (0.0)	(7.7)	88.5 (85.9)	(8.7)	0.0 (0.6)
$18{ }^{\text {c }}$	2.03	$\begin{aligned} & (0.0) \\ & (0.0) \end{aligned}$	$\begin{gathered} (7,3) \\ (5,7) \end{gathered}$	$\begin{gathered} 8.2 \\ (85.6) \end{gathered}$	$\left(\begin{array}{l}10.5 \\ (8.7)\end{array}\right.$	0.0.
$19^{\text {c }}$	2.05	0.0 (0.0) 0.0	(6.2	8,2 (85.1)	10.8 (9.9)	(0.0)
$20 \underline{1}$	2.21	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\left(\begin{array}{l}1.7 \\ (1,7)\end{array}\right.$	$\begin{gathered} 75.3 \\ (75.6) \end{gathered}$	(23.0)	P0.0
${ }^{211^{\text {a }}}$	2.22	0.0 (0.0) 0.0	$\stackrel{2}{2.4}(1.6)$	(73.6)	(24.0)	0.0 (0.0) 0.0
$22^{\text {a }}$	2.27	$\begin{aligned} & 0.0 \\ & 10.01 \end{aligned}$	${ }_{(0}^{1.5}(1.2)$	$\begin{gathered} \left.\begin{array}{c} 69.7 \\ (70.6) \end{array}\right) \end{gathered}$	$\left.\begin{array}{c} 28,8 \\ (28.1) \end{array}\right)$	0.0 (0.0) (0.0)
23^{-3}	2,31	0.0 (0.0) 0.0	$\left(\begin{array}{l}1.7 \\ (1.0) \\ \hline 0\end{array}\right.$	$\left.\begin{array}{c} 6.1 \\ (67.1) \end{array}\right)$	(33.2)	(0.0) (0.1)
24^{-3}	2.32	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	0.8 (0.9)	$\begin{gathered} 56 \cdot 2 \\ (66.3) \end{gathered}$	${ }_{\text {(33. }}^{33.0}$	(c, 0.0
$25^{\text {a }}$	2.35	$\begin{aligned} & 0.0 \\ & (0,0) \end{aligned}$	(0.8) $\begin{aligned} & 1.8 \\ & (0.8)\end{aligned}$	63.4 (63.6)	(35.6)	(0.1)
$26^{\text {a }}$	2.35	0.0 (0.0) 0.0	1.0 (0.8)	63.5 (63.6)	(35.5)	(0.0)
27^{-1}	2.35	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	(0.8)	$\begin{gathered} 64.4 \\ (63 \cdot 6) \end{gathered}$	$\begin{gathered} 35.6 \\ (35.6) \end{gathered}$	(0.0)
$28^{\underline{n}}$	2.35	(0.0)	(0.0.8)	65.0 (63.6)	(35.0)	(0.1)
29^{9}	2.36	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{gathered} (0.0) \\ (0.7) \end{gathered}$	$\begin{gathered} (3.8 \\ (62.6) \end{gathered}$	36.2 (36.6)	(0.0.
30^{9}	2.36	$\binom{0.0}{(0.0)}$	(0.7)	(63.6)	${ }^{36.4}$	0.0 (0.1) (0.0)
$32^{\text {- }}$	2.43	$\begin{gathered} 0.0 \\ (0.0) \end{gathered}$	$\begin{aligned} & 0.0 \\ & 10.5) \end{aligned}$	(57.4)	$\begin{gathered} 42,6 \\ (43 \cdot 2) \end{gathered}$	(0.0.
32-8	2.43	0.0 (0.0)	0.0 (0.5)	${ }_{\substack{56.7 \\(56.2)}}$	43.4 (43.2)	(0.0)
$33^{\text {f }}$	2.56	(0.0)	0.0 (0.2)	${ }_{(43.0}^{4}$	(56.0)	(0.3)

[^1]ical shift, δ, of compounds based on either triply or quadruply connected phosphorus consists of additive contributions due to the σ and π orbitals, i.e., $\delta=\delta_{\sigma}+\delta_{\pi}$. The σ contribution, δ_{σ}, is a function of the bond angles and electronegativities of the atoms bonded to the phosphorus, while δ_{π} is simply proportional to the total occupation of the d_{π} orbitals of the phosphorus. Because of the cage structure of the $\mathrm{P}_{4} \mathrm{O}_{6}$ moiety, the bond angles are reasonably fixed so that we shall assume that the median value ${ }^{12}$ of the OPO bond angles of the uncomplexed phosphorus atoms is 99° and of the complexed atoms is 101.5°. On this basis and the assumption that the Pauling electronegativity of the bridging oxygens is maintained at a constant value of 3.51 , we obtain ${ }^{11}$ eq 4 and 5 as reasonable approximations of the chemical shift (in ppm, referenced to $\mathrm{H}_{3} \mathrm{PO}_{4}$) for the phosphorus atoms in a $\mathrm{P}_{4} \mathrm{O}_{6}$ complex.

For the uncomplexed phosphorus atoms

$$
\begin{equation*}
\delta_{u}=-35-400 n_{\pi}-36 \Delta \theta \tag{4}
\end{equation*}
$$

For the complexed phosphorus atoms
$\delta_{\mathrm{c}}=-201+187 \chi_{\mathrm{M}}-21 \chi_{\mathrm{M}^{2}}-147 n_{\pi}-\left(24-8 \chi_{\mathrm{M}}\right) \Delta \theta$
n_{π} is the total occupation of the d_{π} orbitals of the phosphorus atom in question, χ_{M} is the Pauling electronegativity of the Lewis acid complexing agent (in the range $1.6 \leq \chi_{M} \leq 2.2$), and $\Delta \theta$ is the difference in the OPO bond angle from 99° for the uncoordinated phosphorus and 101.5° for the coordinated phosphorus.

The experimental P^{31} chemical-shift data on the borane and tricarbonylnickel complexes of phosphorus trioxide are summarized in Figure 4. Upon application of eq 4 and 5 to these data on the assumption ${ }^{13}$ that the Pauling electronegativity of the boron of the BH_{3} group is 2.0 and of the nickel is 1.8 (with no allowance for a contact shift since the nickel is diamagnetic), we see that, in both cases, upon coordination, the total occupation of the d_{π} orbitals of the phosphorus is raised from ca. 0.2 to $c a .1 .8$ electrons $/ \mathrm{P}$, with little difference between the effect of nickel and boron. In other words, the downfield shift of $10-20 \mathrm{ppm}$ observed upon coordinating a $P_{4} \mathrm{O}_{6}$ phosphorus with a nickel atom as compared to the upfield shift of about the same magnitude upon coordinating with boron follows from the difference in Pauling electronegativities between these two substituents and the fact that the chemical shifts calculated for zero occupation of the phosphorus d_{π} orbitals are in the neighborhood of +80 ppm . The observed

[^2]decrease in chemical shifts (see Figure 4) of the coordinated phosphorus atoms upon successive coordination may be due to small increases ($c a .0 .03$ electron/P) in the occupation of the d_{π} orbitals of the phosphorus, but this effect may also be totally accounted for by a bond-angle change of $1-2^{\circ}$, as indicated by eq 5 . The observed changes in the chemical shifts of the uncoordinated phosphorus atoms upon the coordination of other phosphorus atoms in the $\mathrm{P}_{4} \mathrm{O}_{6}$ molecule may be entirely accounted for by OPO bond-angle changes of less than 0.2°, according to eq 4 .

Figure 4. The P^{31} chemical shifts of $\mathrm{P}_{4} \mathrm{O}_{6}$ and its complexes with tricarbonylnickel and with borane. The heights of the lines denote the relative areas of the complexed and uncomplexed peaks.

Since boron does not have available orbitals for π bonding, the d_{π} occupation of the phosphorus orbitals calculated from the chemical-shift data must come completely from electrons supplied by the three oxygen atoms. It should be noted that the increase in total occupation of the phosphorus d_{π} orbitals from $c a .0 .2$ to 1.8 electrons per P upon coordination of oxygenbonded triply connected phosphorus by either nickel or boron is approximately equal to the increase in d_{π} occupation observed when the unshared pair is employed to bond with ${ }^{11,14}$ either oxygen or sulfur. These findings are in accord with the idea that π bonding is a complicated feedback mechanism for the avoidance of a buildup of positive charge on the phosphorus when it loses its unshared pair of electrons through bond formation with another atom. All other things being equal, such electronic balancing upon conversion of an unshared pair to a bond should be relatively insensitive to the electronegativity of the element with which this bond is formed since the polarity of a bond due to a difference in electronegativity of the bonded atoms represents a small electronic perturbation as compared to the transition from an unshared pair (abortive bond) to an electron-sharing bond.

Typical coupling constants (in cps) for the borane complexes of phosphorus trioxide may be summarized as

The B-P coupling constant is about half as large as the
(14) J. R. Van Wazer, J. Am. Chem. Soc., 78, 5709 (1956).

B-H, probably because each electron of the pair donated by the phosphorus has only $c a .1 / 4 \mathrm{~s}$ character, while the electron donated by the hydrogen is a pure s orbital. ${ }^{15}$ The difference between the $\mathrm{H}-\mathrm{B}-\mathrm{P}$ and the
(15) J. A. Pople, W. G. Schneider, and H. J. Bernstein, "High-Resolution Nuclear Magnetic Resonance," McGraw-Hill Book Co., Inc., New York, N. Y., 1959, Chapter 8.

P-O-P coupling is not as readily explained in simple terms, even when the relativistic correction is invoked.

Acknowledgment. We wish to thank Dr. Peter J. Wheatley for the X-ray data on the $\mathrm{P}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{BH}$ complex as well as for its interpretation.

[^0]: (6) I. Shapiro, C. O. Wilson, and W. J. Lehmann, J. Chem. Phys., 29, 237 (1958).

[^1]: $A_{\text {By bublifg }} \mathrm{H}_{2} \mathrm{H}_{8}$ through $\mathrm{P}_{4} \mathrm{O}_{8}$ in a solvent. b by bubbling $\mathrm{B}_{2} \mathrm{H}_{\varepsilon}$ through $\mathrm{P}_{4} \mathrm{O}_{\mathrm{e}}$ without a
 ${ }^{\text {d }}$ by adaixing $\mathrm{P}_{4} \mathrm{O}_{8}$ to $\mathrm{P}_{4} \mathrm{O}_{6} \cdot \dot{2 b}_{3}$ in CHCl_{3}. EA chloroform solution of recrystallized $\mathrm{P}_{4} \mathrm{O}_{8} \cdot 2 \mathrm{BH}_{3}$ - the theoretical R value is given in the square brackets. f A freat solution of the crystals obtained by cooling sample *27. I and h the asme solution 2 aln and 10 win later at 3° and atmopheric pressure. $\frac{1}{\text { I }}$ The supernatant solution of the cooled

 Values in parentheses vere calculated from $\mathrm{K}_{1}-4.0 \times 10^{-3}, \mathrm{~K}_{2}=6.7 \times 10^{-3}$, snd $\mathrm{K}_{3}=4.0$ $\times 10^{-3}$.

[^2]: (11) J. H. Letcher and J. R. Van Wazer, J. Chem. Phys., 44, 815 (1966). Note: The correct values are $f(3)=0.0189$ and $f(4)=0.0067$. These were the values employed in the calculations of this reference.
 (12) The OPO bond angles in $\mathrm{P}_{4} \mathrm{O}_{6}$ have been determined by electron diffraction to be $99 \pm 1^{\circ}$ and of $\mathrm{P}_{4} \mathrm{O}_{10}$ to be $101.5 \pm 1^{\circ}$, according to G. C. Hampson and A. J. Stosick, J. Am. Chem. Soc., 60, 1814 (1938). Also see L. R. Maxwell, S. B. Hendricks, and L. S. Deming, J. Chem. Phys., 5, 626 (1937). In the $\mathrm{P}_{4} \mathrm{O}_{9}$ cage structure, the OPO bond angles of the triply connected phosphorus atom were found to be 98°, whereas the OPO bond angles of the three phosphoryl groupings are 103°, according to K. H. Jost, Acta Cryst., 17, 1593 (1964).
 (13) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, p 93; also see W. Gordy and W. J. O. Thomas, J. Chem. Phys., 24, 439 (1956).

